Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation.
نویسندگان
چکیده
Accurately quantifying changes in soil carbon (C) stocks with land-use change is important for estimating the anthropogenic fluxes of greenhouse gases to the atmosphere and for implementing policies such as REDD (Reducing Emissions from Deforestation and Degradation) that provide financial incentives to reduce carbon dioxide fluxes from deforestation and land degradation. Despite hundreds of field studies and at least a dozen literature reviews, there is still considerable disagreement on the direction and magnitude of changes in soil C stocks with land-use change. We conducted a meta-analysis of studies that quantified changes in soil C stocks with land use in the tropics. Conversion from one land use to another caused significant increases or decreases in soil C stocks for 8 of the 14 transitions examined. For the three land-use transitions with sufficient observations, both the direction and magnitude of the change in soil C pools depended strongly on biophysical factors of mean annual precipitation and dominant soil clay mineralogy. When we compared the distribution of biophysical conditions of the field observations to the area-weighted distribution of those factors in the tropics as a whole or the tropical lands that have undergone conversion, we found that field observations are highly unrepresentative of most tropical landscapes. Because of this geographic bias we strongly caution against extrapolating average values of land-cover change effects on soil C stocks, such as those generated through meta-analysis and literature reviews, to regions that differ in biophysical conditions.
منابع مشابه
Effects of Land Use and Land Cover changes on Soil Organic Carbon and Total Nitrogen Stocks in the Olesharo Catchment, Narok County, Kenya
Land Use and Land Cover Change (LULCC) is the most prominent cause of Soil Organic Carbon (SOC) variability in any landscape. Kenyan Arid and Semi-Arid Lands (ASALs) have been facing extensive land use/ cover changes in the last three decades prompting a review on the impacts it has on soil quality and consequently on land degradation. This study was carried out in 2016 in Olesharo Catchment, N...
متن کاملThe Effect of Land use and Soil Erosion on Soil Organic Carbon and Nitrogen Stock
Soil organic carbon (SOC) is a principal component in soil quality assessment. Knowledge of SOC and total nitrogen (TN) stocks are important keys to understand the role of SOC in the global carbon cycle and, as a result, in the mitigation of global greenhouse effects. SOC and TN stocks are functions of the SOC concentration and the bulk density of the soil that are prone to changes, influe...
متن کاملThe Impacts of Land Use Change in Soil Carbon and Nitrogen Stocks (Case Study Shahmirzad Lands, Semnan Province, Iran)
Soil carbon and nitrogen contents play an important role in sustaining soil physical and chemical quality and help to have healthy environments. The continues conversion of rangelands to arable lands has the potential to change carbon and nitrogen sequestration. In this study to evaluate the effects of land use change on soil organic carbon and nitrogen stock, forty samples collected from north...
متن کاملEffects of Land-Use Change on the Carbon Balance of Terrestrial Ecosystems
Most changes in land use affect the amount of carbon held in vegetation and soil, thereby, either releasing carbon dioxide (a greenhouse gas) to, or removing it from, the atmosphere. The greatest fluxes of carbon result from conversion of forests to open lands (and vice versa). Model-based estimates of the flux of carbon attributable to land-use change are highly variable, however, largely as a...
متن کاملEstimation of global soil respiration by accounting for land-use changes derived from remote sensing data.
Soil respiration is one of the largest carbon fluxes from terrestrial ecosystems. Estimating global soil respiration is difficult because of its high spatiotemporal variability and sensitivity to land-use change. Satellite monitoring provides useful data for estimating the global carbon budget, but few studies have estimated global soil respiration using satellite data. We provide preliminary i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 15 شماره
صفحات -
تاریخ انتشار 2011